

VISVAJIIT CHEZHIAN M.S Robotics

 visvajiit23@gmail.com Visvajiit Chezhian Portfolio

Budding roboticist with extensive research experience in Localization and Trajectory Planning. Highly enthusiastic about advancing cutting-edge research in mobile robotics

EDUCATION

Bachelor of Technology in Mechanical Engineering, Manipal Institute of Technology Jul 2018 – Oct 2022 | Manipal, India
CGPA: 8.48/10 (Minor specialization: Fundamentals of Computing)

PUBLICATIONS

V. Chezhian and S. Rao, "A Vectorial Approach to Particle Filter Weighting and Resampling for Robot Localization," 2025 25th International Conference on Control, Automation and Systems (ICCAS), Incheon, Korea, Republic of, 2025, pp. 1457-1462, **DOI:** [10.23919/ICCAS66577.2025.11301265](https://doi.org/10.23919/ICCAS66577.2025.11301265).

Visvajiit Chezhian and Sachit Rao, Zero-Clamped C2-Continuous Jerk Minimized Quintic Time trajectories (in preparation)

RESEARCH EXPERIENCE

Research Associate, Advisor: Prof. Sachit Rao Oct 2022 – Jul 2025
Ascend Studio, Machine Intelligence and Robotics Center (MINRO)
International Institute of Information Technology, Bangalore (IIITB)

Zero-clamped C2-continuous Quintic Jerk-Minimized Time Trajectories Jul 2024 – Sep 2025
- Implemented a path smoothing algorithm using quintic time trajectories to achieve **C2 continuous global trajectories** for a self-navigating ground robot.
- Developed **quintic blending** for seamless transitions between linear path segments generated by Orientation Aware A* algorithm.
- Formulated an **analytical solution** that simultaneously bounds **blend times** and enforces **convex-hull-constrained** trajectories, replacing traditional iterative feasibility and collision-detection procedures.
- Investigating optimal start/end point selection for **jerk-minimized blending** to improve trajectory smoothness and dynamic performance.

Vectorial approach to Particle Filter weighting Jan 2024 – Jun 2024
- Developed a novel vector-based weighting method for particle filters, improving robustness to outliers and symmetric map ambiguities in global localization.
- Achieved more successful global localization by replacing the standard sensor model implementation with proposed method in localization pipelines.
- Authored a first-author research paper on this approach, accepted for publication at ICCAS 2025.

Cross-Sensor Point Cloud Registration Oct 2023 – Dec 2023
- Implemented cross-sensor point cloud matching using ArUco markers, integrating camera and depth sensor data.

- Developed a robust method for **detecting** and estimating the pose of ArUco markers with up to **90% accuracy** on viewing angles less than 45 degrees, enhancing the precision of 3D mapping.
- Achieved seamless point cloud alignment, improving the efficiency and accuracy of multi-sensor fusion in complex environments.

Multi-agent path planning using HCA* Sep 2023 – Sep 2023

- Implemented Hierarchical Cooperative A* (HCA*) for a warehouse management-oriented startup.
- Generated collision-free multi-agent trajectories, optimizing the efficiency and safety of warehouse operations.

Orientation aware modified A* algorithm Jul 2023 – Aug 2023

- Developed an orientation-aware A* algorithm respecting non-holonomic constraints of ground robots.
- Optimized the search space by biasing easier motions, narrowing down to more likely waypoints and **reducing the number of steps** to reach the goal by **up to 50%**.
- Implemented a method to **prevent sharp turns**, aiding higher curvature blends.
- Achieved faster cornering as a result of the implemented method.

Localization and Autonomous Navigation Jan 2023 – May 2023

- Achieved real-time global localization using **particle filter** with mean error of 10 cm and 0.4 rad in a 13x15 meter room on all successful attempts using MATLAB.
- Implemented the **A*** algorithm for path planning.
- Applied piecewise-stitched cubic time trajectories using obtained waypoints, ensuring **global velocity continuity** and piecewise acceleration continuity.

Rhythmic flight with Quadcopter Oct 2022 – Dec 2022

- Achieved music-synchronised quadcopter movement in a confined three-dimensional space using MATLAB.
- Utilized **Fast Fourier Transform** to identify prominent frequencies and track their intensity changes over the piece of music.
- Identified patterns in varying intensities over multiple octaves to determine the time to traverse segments.
- Applied 1-dimensional cubic time trajectories to ensure smooth velocity profiles.

PROJECTS

SLAM and Autonomous Navigation on Mobile Robot using ROS 1 Feb 2022 – Sep 2022

Advisor: Prof. Sivayazi Kappagantula, MIT Manipal

- Designed, 3D printed and assembled a mobile robot.
- Used LiDAR as sensor input and wheel encoder data for odometry input.
- Utilized ROS1 Gmapping and Navigation Stack for peripheral integration, SLAM implementation and autonomous navigation.

Turtlebot3 Simulation in Gazebo Nov 2021 – Dec 2021

- Constructed a custom world using Gazebo in ROS1.
- Implemented Gmapping package on Turtlebot3 model to perform slam on Gazebo simulation.

**Vending Machine for MIT Manipal Innovation
Centre**

May 2019 – Jul 2019

- Collaborated with seniors in developing the dispensing mechanism of an inhouse vending machine.
- Installed an IR-based system to ensure failproof transactions, enhancing the overall reliability.

ROLES OF RESPONSIBILITIES

- Held the position of **Class-Representative** for three academic years (2019-2022).
- **Point of Contact** for **Outreach efforts** of Ascend Studios, IIIT Bangalore.

OUTREACH AND WORKSHOPS

ROS Workshop : Conducted a week-long workshop on setting up a ROS environment and various simulations for faculty members of the Myanmar Institute of Information Technology.

STEM Outreach : Conducted over 15 lab demonstrations showcasing drone shows and 6-DOF manipulator operations, simplifying complex algorithms for undergraduate and school students.

Poster Presentation : Presented a poster titled "Localization and Navigation methods" at the annual RISE event at IIIT Bangalore, showcasing innovative research and developments.

SKILLS

Programming

Matlab, Python, Bash

Softwares and Tools

ROS 1, Gazebo, Fusion360

Sensors and Hardware

LiDAR, Kinect, Encoders

ADDITIONAL COURSES

Artificial Intelligence for Robotics, Udacity offered by Georgia Institute of Technology

Modern Robotics, Course 2: Robot Kinematics,
Coursera offered by Northwestern University

Modern Robotics, Course 1 : Foundations of Robot Motion,
Coursera offered by Northwestern University